KONSEP DASAR ILMU POLIMER

MAKROMOLEKUL adalah molekul raksasa (giant) dimana paling sedikit seribu atom terikat bersama oleh ikatan kovalen. Makromolekul ini mungkin rantai linear, bercabang, atau jaringan tiga dimensi.

Makromolekul dibagi atas dua material yaitu

1. Material biologis (makromolekul alam)
            Contoh : karet alam, wool, selulosa, sutera dan asbes

2. Material non biologis (makromolekul sintetik)
            Contoh : plastik, serat sintetik, elastomer sintetik

Material biologis dapat menunjang tersediaanya pangan dan dibahas dalam biokimia sedang material non biologis mencakup bahan sintetik. Banyak makromolekul sintetik memiliki struktur yang relatif sederhana, karena mereka terdiri dari unit ulangan yang identik (unit struktural). Inilah sebabnya mereka disebut polimer.
Polimer sangat penting karena dapat menunjang tersedianya pangan, sandang, transportasi dan komunikasi (serat optik). Saat ini polimer telah berkembang pesat. Berdasarkan kegunaannya polimer digolongkan atas :

a.       Polimer komersial (commodity polymers)
Polimer ini dihasilkan di negara berkembang, harganya murah dan banyak dipakai dalam kehidupan sehari hari. Kegunaan sehari-hari dari polimer ini ditunjukkan dalam tabel 1.1

Contoh : Polietilen (PE), polipropilen (PP), polistirena (PS), polivinilklorida (PVC), melamin formaldehid
Tabel 1.1 Contoh dan kegunaan polimer komersial

Polimer komersial
Kegunaan atau manfaat
Polietilena massa jenis rendah(LDPE)

Polietilena massa jenis rendah(HDPE)

Polipropilena (PP)

Poli(vinil klorida) (PVC)


Polistirena (PS)

Lapisan pengemas, isolasi kawat, dan kabel, barang mainan, botol yang lentur, bahan pelapis

Botol, drum, pipa, saluran, lembaran, film, isolasi kawat dan kabel

Tali, anyaman, karpet, film

Bahan bangunan, pipa tegar, bahan untuk lantaui, isolasi kawat dan kabel

Bahan pengemas (busa), perabotan  rumah, barang mainan


b.      Polimer teknik (engineering polymers)
Polimer ini sebagian dihasilkan di negara berkembang dan sebagian lagi di negara maju. Polimer ini cukup mahal dan canggih dengan sifat mekanik yang unggul dan daya tahan yang lebih baik. Polimer ini banyak dipakai dalam bidang transportasi (mobil, truk, kapal udara), bahan bangunan (pipa ledeng), barang-barang listrik dan elektronik (mesin bisnis, komputer), mesin-mesin industri dan barang-barang konsumsi

Contoh : Nylon, polikarbonat, polisulfon, poliester

c.       Polimer fungsional (functional polymers)
Polimer  ini dihasilkan dan dikembangkan di negara maju dan dibuat untuk tujuan khusus dengan produksinya dalam skala kecil

Contoh : kevlar, nomex, textura, polimer penghantar arus dan foton, polimer peka cahaya, membran, biopolimer



1.1.1 Definisi Dan Tata Nama (Nomenklatur)

J  Definisi


q  Polimer
Molekul besar (makromolekul) yang terbangun oleh susunan unit ulangan kimia yang kecil, sederhana dan terikat oleh ikatan kovalen. Unit ulangan ini biasanya setara atau hampir setara dengan monomer yaitu bahan awal dari polimer.

q  Monomer
Sebarang zat yang dapat dikonversi menjadi suatu polimer. Untuk contoh, etilena adalah monomer yang dapat dipolimerisasi menjadi polietilena (lihat reaksi berikut). Asam amino termasuk  monomer juga, yang dapat dipolimerisasi menjadi polipeptida dengan pelepasan air


J  Tata Nama (Nomenklatur)  
            Jumlah yang sangat besar dari struktur polimer menuntut adanya sistem tata nama yang masuk akal. Berikut ini adalah aturan pemberian nama polimer vinil yang didasarkan atas nama monomer (nama sumber atau umum), taktisitas dan isomer :
q  Nama monomer satu kata :
            Ditandai dengan melekatkan awalan poli pada nama monomer
            Contoh :

Polistirena
polietilena 
Politetrafluoroetilena

(teflon, merk dari du Pont)

q  Nama monomer lebih dari satu kata atau didahului sebuah huruf atau angka
Nama monomer diletakkan dalam kurung diawali poli
Contoh :
Poli(asam akrilat) 

Poli(a-metil stirena)
Poli(1-pentena) 


q  Untuk taktisitas polimer
-          diawali huruf i untuk isotaktik atau s (sindiotaktik) sebelum poli
Contoh : i-polistirena (polimer polistirena dengan taktisitas isotaktik)

q  Untuk isomer struktural dan geometrik
-          Ditunjukkan dengan menggunakan awalan cis atau trans dan 1,2-  atau 1,4- sebelum poli
Contoh : trans-1,4-poli(1,3-butadiena)

IUPAC merekomendasikan nama polimer diturunkan dari struktur unit dasar, atau unit ulang konstitusi (CRU singkatan dari constitutional repeating unit) melalui tahapan sebagai berikut :
1.      Pengidentifikasian unit struktural terkecil (CRU)
2.      Sub unit CRU ditetapkan prioritasnya berdasarkan titik pengikatan dan ditulis prioritasnya menurun dari kiri ke kanan (lihat penulisan nama polistirena) 
3.      Substituen-substituen diberi nomor dari kiri ke kanan
4.      Nama CRU diletakkan dalam kurung biasa (atau kurung siku dan kurung biasa kalau perlu), dan diawali dengan poli

Tabel  1.3   Contoh pemberian beberapa nama polimer menurut sumber monomernya dan IUPAC

Nama Sumber
Nama IUPAC
Polietilena
Politetrafluoroetilena
Polistirena
Poli(asam akrilat)
Poli(a-metilstirena)
Poli(1-pentena)
Poli(metilena)
Poli(difluorometilena)
Poli(1-feniletilena)
Poli(1-karboksilatoetilena)
Poli(1-metil-1-feniletilena)
Poli[1-(1-propil)etilena]
Untuk tata nama polimer non vinil seperti polimer kondensasi umumnya lebih rumit darpada polimer vinil. Polimer polimer ini biasanya dinamai sesuai dengan monomer mula-mula atau gugus fungsional dari unit ulangan.

Contoh : nylon, umumnya disebut nylon-6,6 (66 atau 6/6), lebih deskriptif disebut  poli(heksametilen adipamida) yang menunjukkan poliamidasi heksametilendiamin (disebut juga 1,6-heksan diamin) dengan asam adipat. Lihat gambar berikut

            Mengikuti rekomendasi IUPAC, kopolimer (polimer yang diturunkan dari lebih satu jenis monomer) dinamai dengan cara menggabungkan istilah konektif  yang ditulis miring antara nama nama monomer yang dimasukkan dalam kurung atau antara dua atau lebih nama polimer. Istilah konektif menandai jenis kopolimer sebagaimana enam kelas kopolimer yang ditunjukkan dalam tabel 1.4 berikut

Tabel 1.4  Berbagai jenis kopolimer
Jenis kopolimer
Konektif
Contoh
Tak dikhususkan
-co-
Poli[stirena-co-(metil metakrilat)]
Statistik
-stat-
Poli(stirena-stat-butadiena)
Random/acak
-ran-
Poli[etilen-ran-(vinil asetat)]
Alternating (bergantian)
-alt-
Poli(stirena-alt-(maleat anhidrida)]
Blok
-blok-
Polistirena-blok-polibutadiena
Graft (cangkok/tempel)
-graft-
Polibutadiena-graft-polistirena

1.1.2 Proses Polimerisasi
Polimerisasi kondensasi adalah polimerisasi yang disertai dengan pembentukan molekul kecil (H2O, NH3).
Contoh :


Polimerisasi adisi adalah polimerisasi yang disertai dengan pemutusan ikatan rangkap diikuti oleh adisi monomer.
Contoh :








1.1.3 Klasifikasi  Polimer

            Polimer dapat diklasifikasikan atas dasar asalnya (sumbernya), dan strukturnya.
a.      Asal atau sumbernya
1. Polimer  Alam :
§  tumbuhan  : karet alam, selulosa
§  hewan        : wool, sutera
§  mineral
2. Polimer  Sintetik :
§  hasil polimerisasi kondensasi
§  hasil polimerisasi adisi

b. Struktur
            Berdasarkan strukturnya polimer dibedakan atas :
            1. Polimer linear
            Polimer linear terdiri dari rantai panjang atom-atom skeletal yang dapat mengikat gugus substituen. Polimer ini biasanya dapat larut dalam beberapa pelarut, dan dalam keadaan padat pada temperatur normal. Polimer ini terdapat sebagai elastomer, bahan yang fleksibel (lentur) atau termoplastik seperti gelas).

Contoh :
            Polietilena, poli(vinil klorida) atau PVC, poli(metil metakrilat) (juga dikenal sebagai PMMA, Lucite, Plexiglas, atau perspex), poliakrilonitril (orlon atau creslan) dan nylon 66

            2. Polimer bercabang
            Polimer bercabang dapat divisualisasi sebagai polimer linear dengan percabangan pada struktur dasar yang sama sebagai rantai utama. Struktur polimer bercabang diilustrasikan sebagai berikut

            3. Polimer jaringan tiga dimensi (three-dimension network) 
            Polimer jaringan tiga dimensi adalah polimer dengan ikatan kimianya terdapat antara rantai, seperti digambarkan pada gambar berikut. Bahan ini biasanya di”swell” (digembungkan) oleh pelarut tetapi tidak sampai larut. Ketaklarutan ini dapat digunakan sebagai kriteria dari struktur jaringan. Makin besar persen sambung-silang (cross-links) makin kecil jumlah penggembungannya (swelling). Jika derajat sambung-silang cukup tinggi, polimer dapat menjadi kaku, titik leleh tinggi, padat yang tak dapat digembungkan, misalnya intan (diamond).
                                           

Polimer linear dan bercabang memiliki sifat :
            1. Lentur
            2. Berat Molekul relatif kecil
            3. Termoplastik

1.1.4  Kopolimer
            Kopolimer adalah suatu polimer yang dibuat dari dua atau lebih monomer yang berlainan. Berikut ini adalah jenis jenis kopolimer yang terbentuk dari monomer pertama (A) dan monomer ke dua (B).

Jenis kopolimer :
  1. Kopolimer blok
Kopolimer blok mengandung blok dari satu monomer yang dihubungkan dengan blok monomer yang lain. Kopolimer blok biasanya terbentuk melalui proses polimerisasi ionik. Untuk polimer ini, dua sifat fisik yang khas yang dimiliki dua homopolimer tetap terjaga.

  1. Kopolimer graft (tempel/cangkok)
Kopolimer graft biasanya dibuat dengan mengikatkan bersama dua polimer yang berbeda. Untuk contoh, homopolimer yang diturunkan dari monomer A dapat diinduksi untuk bereaksi dengan homopolimer yang diturunkan dari monomer B untuk menghasilkan kopolimer graft, yang ditunjukkan pada gambar berikut



Perkembangan selanjutnya ada yang berbentuk kopolimer sisir (comb copolymer) dan bintang (star copolymer).
 
  1. Kopolimer bergantian (alternating)
Kopolimer yang teratur yang mengandung sequensial (deretan) bergantian dua unit monomer. Polimerisasi olefin yang terjadi lewat mekanisme jenis ionik dapat menghasilkan kopolimer jenis ini.

  1. Kopolimer Acak
Dalam kopolimer acak, tidak ada sequensial yang teratur. Kopolimer acak sering terbentuk jika jenis monomer olefin mengalami kopolimerisasi lewat proses jenis radikal bebas. Sifat kopolimer acak sungguh berbeda dari homopolimernya.

1.2  BERAT MOLEKULAR DAN DISTRIBUSI BERAT MOLEKULAR

            Berat molekular polimer merupakan salah satu sifat yang khas bagi polimer yang penting untuk ditentukan. Berat molekular (BM) polimer  merupakan harga rata-rata dan jenisnya beragam yang akan dijelaskan kemudian. Dengan mengetahui BM kita dapat memetik beberapa manfaat.

1.2.1 Manfaat berat molekular rata-rata polimer

  • Menentukan aplikasi polimer tersebut
  • Sebagai indikator dalam sintesa dan proses pembuatan produk polimer
  • Studi kinetika reaksi polimerisasi
  • Studi ketahanan produk polimer dan efek cuaca terhadap kualitas produk

KEPUSTAKAAN :  


  1. Malcolm, P.S., 2001. Polymer Chemistry : An Introduction, diindonesiakan oleh Lis Sopyan, cetakan pertama, PT Pradnya Paramita : Jakarta
  2.  Fried, J.R., 1995. Polymer Science and Technology. Prentice Hall PTR : New Jersey
  3.  Mark, J.E. 1992. Inorganic Polymers. Prentice-Hall International, Inc. : New Jersey
  4.  Odian, G. 1991. Principles of Polymerization. 3rd edition, John Wiley & Sons, Inc : New York
  5.  Van Krevelen, D.W., 1990. Properties of Polymers. Elsevier Science B.V : Amsterdam
  6.  Sperling, L.H., 1986. Introduction to Physical Polymer Science. John Wiley & Sons, Inc : New York
  7.  Billmeyer, F.W., 1984. TextBook of Polymer Science. 3rd edition, Joh Willey & Sons Inc : New York
  8.  McCaffery, E.L., 1970. Laboratory Preparation for Macromolecular Chemistry. McGraw-Hill Book Company : New York








0 komentar:

Poskan Komentar

thanks to visit

Mengenai Saya

Foto Saya
berbagi kebaikan dengan berbagi informasi...

LIHAT PULA BLOG KU

ME ON TWITTER

Followers

TOP search

DELVINA GINTING HERE. Diberdayakan oleh Blogger.